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Why Study Interfaces?

Interfaces are involved in many physical / biological / atmospheric systems

Compared with isotropic (bulk) environments:
! Are interfaces unique?  If so, how?
! Are microscopic and macroscopic properties altered similarly?

Why Study Dye Aggregates?

Industrial Applications
! Photography, photovoltaic cells, light harvesting devices

Dye Aggregates are a sensitive probe of environment
! Laser dyes are well characterized in the bulk
! Dye aggregates are more prevalent at the air/water interface than in 

the bulk (IR125, Levinger, 1995)

Introduction
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Second Harmonic Generation at the Air/Water Interface

Nonlinear surface spectroscopy:
Detects molecules only at the interface

Second Harmonic Generation (SHG)

          I(2ω) ∝  |χ(2) I(ω)|2

                             χ(2)
 = Ns <T> β

Previous SHG and Sum Frequency Generation studies of
air/liquid (& liquid/liquid) interfaces:

Steady state (spectra;  IR & UV/VIS) > dynamics (VIS)
Steady state  Dynamics
     pH, pK       rotational reorientation

adsorption free energy (∆Gads)             isomerization
         surface polarity

ω 2ω
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Steady-state SHG Studies - study equilibrium properties:
! Electronic Structure: ISHG vs. λ spectra
! Surface Kd and ∆Gads: ISHG vs. bulk dye concentration
! Composition: dependence on bulk salt, surfactant, other solvents
! Aggregate orientation at interface: anisotropy (ISHG vs γ)

Dynamics Studies
Visible pump - probe transient absorption of bulk dye solutions
Visible pump - SHG probe of the dyes at the air / water interface

SHG from Oxazine Dyes at the Air/Water Interface
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Exciton theory of dipole - dipole coupling  (Kasha, 1958)
Coupling depends on distance and relative orientation of monomers
Electronic level splitting - spectral shift of aggregate absorption

                                              H-Aggregate                            J-Aggregate
                                                PARALLEL                          HEAD-TO-TAIL
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Dimer Equilibrium:  for initial [Mo] and fraction x that remains as monomer

      Dimer              2 Monomer                      

Determine Kd from
UV/vis absorption spectra
      (Mo<10-4 M)

Spectral dependence on Mo

εeff (λ) = A/Mo

εeff  (λ) = εM(λ)x + εD(λ)(1-x)/2
εM(λ) from low Mo

Fit x to εeff (λ, Mo) to get Kd

 Bulk Solution Absorption and Kd

Nile Blue
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Results from Bulk Solution Absorption Spectra

Agreement with previous results for Kd:
! For Ox720 with literaturea,b

! Relative scalingc: Ox720 > NB > CV
Adding salt increases dimer concentration (1/Kd) by factor of 2 - 3

                Oxazine dyes in water:  Peak positions and Kd

Dye           λλλλmax (monomer)         λλλλmax (dimer)               1/Kd

    (nm)  (nm)      (M-1) (± 30%)

oxazine 720      620  570         50,000 

        50,000a 

        10,000-100,000b 
Nile blue           630  590         10,000
cresyl violet      580  550         3200 

    a Gvishi & Reisfeld, 1989          b Herkstroeter et al., 1990           c Morozova and Zhigalova, 1982



Univ. de Rennes, September, 2001

SHG Interface Studies
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SHG Concentration Dependence - Adsorption Isotherm

Surface Adsorption:
Langmuir adsorption kinetics: 
          measure ∆Gads 

          I ∝  θ2      

         

                                            
θ = coverage
D = bulk conc. of dimer (Kd) 
∆Gads = -RT ln(55.5*k)

)1( kD
CkD
+

=θ
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Aggregates Prefer the Interface
Surface Free Energies:   ∆∆∆∆Gad for oxazine dyes 

                
 Dye ∆Gad (kcal/mole, ±1)

w/o salt w/ salt
oxazine 720 -10.4 - 14.6
Nile blue -  9.7 - 14.1
cresyl violet                              -   9.6

   

! Large ∆Gad - strong preference for dimer formation at surface
                ∆Gad (p-nitrophenol) ≈ -6 kcal/mole

! Dimer excess at surface -  seen for IR125 (Levinger, 1995)

! Consistent with SHG for variations of solution composition
" Salt increases SHG signal more than expected from bulk Kd
" No SHG observed in non-aggregating conditions

# Methanolic and surfactant solutions
# Non-aggregating oxazines

SHG is from aggregates only!
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SHG Spectra of Oxazines at Air/Water Interface
! One band in SHG spectra
   single species

! SHG(ω): resembles input
resonance (at ω) more than
output (at 2ω)

! SHG peaks are slightly red-
shifted

! Red-shift previously reported
for dye dimers at air / solid
interface (Kemnitz & Leach):
intermolecular interactions
rather than a more polar
interface

! Interface polarity has been
found to be average of two
bulk phases (Eisenthal)
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SHG Polarization Dependence and Orientation

Input (γ) and output polarization resolved ISHG

! Orientational information
! SHG dependence:
     concentration or orientation?

Methods extensively developed and used

   Is and Ip  vs γ
      χχχχ(2)'s
susceptibilities

β's
hyperpolarizabilities

θ,δ, φ
orientation of

molecular axes and
dipole

χIJK = Ns Σ <TIJKijk (θ,δ, φ)> βijk
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Input Polarization Angle (γ)
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SHG Polarization Dependence

! Relationships observed and related to parameters:
" Ips > Ipp

" Ip > Is
" Is,45º > Iss or Isp

Measurements can be reproduced within model
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Results from SHG Polarization Dependence/Anisotropy

δ = 45º,
random[NaCl]

(M)
θ (º)

0 17.2
Nile
blue

0.01 20.3

0 23.4
oxazine

720
0.1 22.5

0 26.0
cresyl
violet 0.1 24.5

Similar results for all dye samples:
! Little or no detectable orientation variation
! ISHG vs. solution composition: [Dimer] not orientation!!!
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Steady-State SHG of Oxazine Dyes
Results from several measurements:

SHG Only from Dimers at Surface
! Single band in spectra
! Orientation independent of coverage
! ISHG consistent with bulk aggregate behavior

" Increases with salt concentration
" No SHG from

# Methanolic and surfactant solutions
# Non-aggregating oxazines

Interface effects vary with property:
! Dimer preference at water surface

" Surface less polar than bulk - average of bulk phases (Eisenthal)
" Our measurement of ∆Gads also consistent with lower polarity

! Red-shifted spectra
" Could be intermolecular interactions of dyes

Aggregates at the interface are a sensitive probe of surface effects!
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Ultrafast Studies of Oxazines at Air/Water

Previous ultrafast work on:
! Dyes in solution Solvation dynamics - mature field
! Aggregates Mostly thin film / monolayer and J-aggregates
! Liquid interfaces Rotational dynamics & isomerization
! Oxazines CV, NB on SiO2 and SnO2 nanoparticles (Kamat)

# of decay times:   One for insulators
                Two for semiconductors (back ET)

monomer dimer

So

S1
S1

+

S1
-

T1

So

hν

IC1

IC2

Initial internal conversion -
 S1

+ →  S1
-  (IC1): <100 fs

Fluorescence not observed

Resolved time:
  S1

- →  S0 (IC2 or knr)
CV: 2.5 ps
NB:<20 ps
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Nile blue 580 nm pump / continuum probe
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  Transient Absorption in Solution
Results can be described in

terms of well-known
mechanisms:

! Time-Resolved Stokes
shift due to solvation
dynamics,

  delayed red shift

! Excited-state lifetimes
    in water (τf), (literature)

" NB: 420 ps
" Ox720: 1.8  ns
" CV: 3.3  ns

! No evidence of signals
from bulk dimers
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Ultrafast TSHG at the Air/Water Interface
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580 nm pump - SHG (290 nm) probe

• Single-photon resonant SHG

• Two parallel GSR mechanisms
" Ground state solvent relaxation
" Vibrational relaxation of hot 

ground state aggregates

Ultrafast TSHG at the Air/Water Interface

TSHG decay times for aqueous
oxazine dye solutions.

dye τ1 (±15%)
ps

τ2 (±15%)
ps

OX720 5 23

CV 4 23

NB 5 22

NB w/o LiCl 8 44
DIMER
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(ω)
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Conclusions
Are interfacial properties consistent with the idea of averaging bulk values?

! Some are:
" Dominance of dimer at surface due to

# Dyes driven to lower polarity (hydrophobicity)
# Interface polarity is the average of the values for water and air

! Others are not:
" Red-shifted dimer SHG spectrum
" Relative ISHG and Kd vs. bulk salt concentration

Oxazine TSHG dynamics at the interface are:
! Different than the bulk
! New intermediate decay times are similar to previous aggregate results

" Transient due to ground state recovery
# Single-photon resonant SHG signal
# Biexponential recovery

! Observed additional recovery compared to colloidal SiO2 / water interface
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Future Directions

! For Oxazines
" Two-photon resonant studies
# S1

+ → S1
- IC

" Other interfacial environments
# Inverse micelles

! Small molecules
" Metal carbonyls (Mn2(CO)10, Cr(CO)6)
" Deep UV pump - mid-infrared probe (~7 µm)
" Colloids in organic solvents
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Molecular Orientation from SHG Polarization Dependence
For isotropic molecular orientation about surface normal,

3 nonzero 2nd order susceptibilities:  χZZZ, χZXX, χXXZ    (χXZX = χXXZ)

SHG Polarization Dependence (γ = 0 is p)

Is(γ) = C | s1 sin 2γ χXXZ |2 (Iω)2

Ip(γ) = C | (s2 χXXZ + s3 χZXX + s4
 χZZZ) cos2 γ + s5 χZXX sin2 γ |2 (Iω)2

s1 - s5:  Coefficients for electric field at surface -
linear & nonlinear Fresnel, geometric factors,
including bulk and interface dielectric constants

χ's (lab frame [XYZ] susceptibilities) related to
     β's (molecular [x’y’z’] hyperpolarizibilities)

and orientation (θ,δ, φ)

       χIJK = Ns Σ <TIJKijk (θ,δ, φ)> βijkijk
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Orientation parameter D(θ) : in terms of χ's  using TIJKijk(θ,δ ,φ)

  D(θ) =  <cos3θ>/<cosθ> =  Y χzzz + 4χxxz + 2χzxx

 3 χzzz + 4χxxz + 2χzxx 

     

RHS:  assume dominant β('s) and δ distribution
       ββββzxx and ββββxxz dominant (based on Heinz, similar to Dick for D(χ’s))

    Nile Blue: δ (°)      0º       45º (random)
D(θ, δ)    0.96      0.91
θ(°)    12.1      17.2

Average θ also depends on distribution for θ, δ - assumed narrow so far
Other derived quantities:       ββββr = ββββxxz/ββββzxx =  (χzzz + 2χxxz)/ (χzzz + 2χzxx) = 0.49

Angle of x axis, ξ:       cos2(ξ) = (1+2βr)-1(χzzz/(χzzz+2χzxx)
       ξ = 78°

Dye Orientation at Interface

Y = 3 - <cos2δ>-1

Y = 1  for random δ
Y = 2  for δ = 0º



Univ. de Rennes, September, 2001

SHG Polarization Dependence:
Results and Interpretation

! Results for χ’s - more than one ββββ significant

! Assume ββββzxx and ββββxxz dominant:

" Analogous to other planar aromatic dyes (e.g., Rhodamines)

" Same for sandwich-type dimers (H-aggregates) as monomer

! NO differences in polarization dependence of SHG for:

" Oxazine 720, Nile blue and cresyl violet, all with salt

" Nile blue: wide concentration range & with and without salt

" Several wavelengths (590 nm and 532 nm)

! SHG intensity changes (with concentration & salt)

" NOT due to orientation effects

" Due to surface dimer population


